Notifications
Clear all
Topic starter 17/08/2025 6:20 pm
Here’s a conceptual Python project that simulates a Satellite Wireless Brain-Computer Interface (BCI) system acting as a Cognitive Service Provider. This system:
- Connects users via satellite-like wireless simulation
- Decodes EEG signals using AI
- Offers cognitive services (e.g., focus enhancement, emotion detection)
- Tracks usage and charges customers accordingly
🗂️ Folder Structure
satellite_bci_service/
│
├── data/
│ └── eeg_streams/ # Simulated EEG data per user
│
├── models/
│ └── cognitive_model.pkl # Trained ML model
│
├── src/
│ ├── __init__.py
│ ├── satellite_link.py # Simulate satellite connection
│ ├── eeg_processor.py # Decode EEG signals
│ ├── cognitive_services.py # Provide cognitive services
│ ├── billing.py # Track usage and charge customers
│ ├── user_manager.py # Manage user profiles
│
├── main.py # Entry point
└── requirements.txt # Dependencies
📦 requirements.txt
numpy
pandas
scikit-learn
joblib
📄 main.py
from src.user_manager import load_users
from src.satellite_link import connect_user
from src.eeg_processor import process_eeg
from src.cognitive_services import provide_service
from src.billing import charge_user
if __name__ == "__main__":
users = load_users()
for user in users:
print(f"\nConnecting {user['name']}...")
eeg_data = connect_user(user["id"])
decoded = process_eeg(eeg_data)
service = provide_service(decoded)
charge = charge_user(user["id"], service)
print(f"Service: {service} | Charge: ${charge:.2f}")
📄 src/user_manager.py
def load_users():
return [
{"id": "user001", "name": "Alice"},
{"id": "user002", "name": "Bob"},
]
📄 src/satellite_link.py
import numpy as np
def connect_user(user_id):
# Simulate EEG signal stream
np.random.seed(hash(user_id) % 1000)
return np.random.rand(4, 100) # 4 channels, 100 samples
📄 src/eeg_processor.py
import numpy as np
import joblib
def extract_features(eeg_data):
return np.mean(eeg_data, axis=1)
def process_eeg(eeg_data):
features = extract_features(eeg_data)
model = joblib.load("models/cognitive_model.pkl")
prediction = model.predict([features])
return prediction[0]
📄 src/cognitive_services.py
def provide_service(decoded_signal):
services = {
"focus": "NeuroFocus Boost",
"relax": "CalmSync Therapy",
"stress": "Cortisol Regulator"
}
return services.get(decoded_signal, "Generic Cognitive Support")
📄 src/billing.py
def charge_user(user_id, service_name):
pricing = {
"NeuroFocus Boost": 19.99,
"CalmSync Therapy": 14.99,
"Cortisol Regulator": 24.99,
"Generic Cognitive Support": 9.99
}
return pricing.get(service_name, 0.0)
📄 models/cognitive_model.pkl
You’ll need to train and save a model using EEG features. Here’s a quick script to generate it:
# train_model.py
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import joblib
X = np.random.rand(100, 4)
y = np.random.choice(["focus", "relax", "stress"], 100)
model = RandomForestClassifier()
model.fit(X, y)
joblib.dump(model, "models/cognitive_model.pkl")
🧠 Expansion Ideas
- Add real-time EEG streaming via Bluetooth or TCP
- Integrate satellite APIs (e.g., Starlink or simulated latency)
- Build a web dashboard for users and billing
- Use OAuth for secure user authentication