Notifications
Clear all
Topic starter 17/08/2025 6:42 pm
Designing a Quantum Brain-Computer Interface (QBCI) is a highly speculative and futuristic concept that blends quantum computing with neural interfaces. While no real-world QBCI exists yet, we can create a conceptual simulation in Python that models how such a system might work—combining EEG-like brain signals with quantum-inspired processing.
This project will simulate brain signals, encode them into quantum states, and apply basic quantum operations using a quantum computing framework like Qiskit.
🧠 Concept Overview
- Brain Signal Simulation: Generate synthetic EEG-like signals.
- Quantum Encoding: Map signal features into quantum states.
- Quantum Processing: Apply quantum gates to simulate decision-making or classification.
- Visualization: Show results of quantum measurements.
🗂️ Folder Structure
qbci_simulator/
├── main.py
├── config/
│ └── settings.yaml
├── data/
│ └── brain_signal.npy
├── brain/
│ ├── __init__.py
│ └── signal_generator.py
├── quantum/
│ ├── __init__.py
│ ├── encoder.py
│ └── processor.py
├── visualization/
│ ├── __init__.py
│ └── results_plotter.py
├── utils/
│ ├── __init__.py
│ └── logger.py
📄 config/settings.yaml
brain:
channels: 8
duration: 5
sample_rate: 128
signal_frequency: 10
noise_level: 0.05
quantum:
qubits: 4
shots: 1024
📄 brain/signal_generator.py
import numpy as np
def generate_brain_signal(channels, duration, sample_rate, signal_freq, noise_level):
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
signal = np.sin(2 * np.pi * signal_freq * t)
data = np.array([
signal + noise_level * np.random.randn(len(t))
for _ in range(channels)
])
np.save("data/brain_signal.npy", data)
return data
📄 quantum/encoder.py
from qiskit import QuantumCircuit
import numpy as np
def encode_signal_to_qubits(signal_segment, num_qubits):
norm = np.linalg.norm(signal_segment)
angles = (np.pi * signal_segment[:num_qubits]) / norm
qc = QuantumCircuit(num_qubits)
for i, angle in enumerate(angles):
qc.ry(angle, i)
return qc
📄 quantum/processor.py
from qiskit import Aer, execute
from qiskit.visualization import plot_histogram
def process_quantum_circuit(qc, shots):
backend = Aer.get_backend("qasm_simulator")
qc.measure_all()
job = execute(qc, backend, shots=shots)
result = job.result()
counts = result.get_counts()
return counts
📄 visualization/results_plotter.py
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
def show_quantum_results(counts):
plot_histogram(counts)
plt.title("Quantum Measurement Results")
plt.show()
📄 utils/logger.py
from datetime import datetime
def log_event(message):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(f"[{timestamp}] {message}")
📄 main.py
import yaml
from brain.signal_generator import generate_brain_signal
from quantum.encoder import encode_signal_to_qubits
from quantum.processor import process_quantum_circuit
from visualization.results_plotter import show_quantum_results
from utils.logger import log_event
def load_config():
with open("config/settings.yaml", "r") as f:
return yaml.safe_load(f)
def main():
config = load_config()
brain_cfg = config["brain"]
quantum_cfg = config["quantum"]
log_event("Generating brain signal...")
signal = generate_brain_signal(
brain_cfg["channels"],
brain_cfg["duration"],
brain_cfg["sample_rate"],
brain_cfg["signal_frequency"],
brain_cfg["noise_level"]
)
log_event("Encoding signal into quantum circuit...")
segment = signal[0][:quantum_cfg["qubits"]]
qc = encode_signal_to_qubits(segment, quantum_cfg["qubits"])
log_event("Processing quantum circuit...")
counts = process_quantum_circuit(qc, quantum_cfg["shots"])
log_event("Displaying results...")
show_quantum_results(counts)
if __name__ == "__main__":
main()
🧪 How to Run
-
Install dependencies:
pip install numpy matplotlib qiskit pyyaml
-
Run the simulation:
python main.py