Notifications
Clear all
Topic starter 17/08/2025 6:16 pm
Creating a basic AI-powered Brain-Computer Interface (BCI) system to process EEG signals and decode them involves several components: data acquisition, preprocessing, feature extraction, model training, and signal decoding. Below is a project structure and source code to get you started with a simplified version using Python.
🗂️ Folder Structure
bci_ai_project/
│
├── data/
│ └── sample_eeg.csv # Sample EEG data (CSV format)
│
├── models/
│ └── eeg_decoder.pkl # Saved ML model
│
├── src/
│ ├── __init__.py
│ ├── data_loader.py # Load and preprocess EEG data
│ ├── feature_extractor.py # Extract features from EEG signals
│ ├── model_trainer.py # Train ML model
│ ├── signal_decoder.py # Use trained model to decode signals
│
├── main.py # Entry point to run the pipeline
└── requirements.txt # Python dependencies
📦 requirements.txt
numpy
pandas
scikit-learn
matplotlib
mne
📄 main.py
from src.data_loader import load_eeg_data
from src.feature_extractor import extract_features
from src.model_trainer import train_model
from src.signal_decoder import decode_signal
if __name__ == "__main__":
# Load EEG data
X, y = load_eeg_data("data/sample_eeg.csv")
# Extract features
features = extract_features(X)
# Train model
model = train_model(features, y)
# Decode new signal
decoded = decode_signal(model, features[0])
print(f"Decoded signal: {decoded}")
📄 src/data_loader.py
import pandas as pd
def load_eeg_data(filepath):
df = pd.read_csv(filepath)
X = df.drop("label", axis=1).values
y = df["label"].values
return X, y
📄 src/feature_extractor.py
import numpy as np
def extract_features(X):
# Simple statistical features
features = []
for signal in X:
stats = [
np.mean(signal),
np.std(signal),
np.max(signal),
np.min(signal)
]
features.append(stats)
return np.array(features)
📄 src/model_trainer.py
from sklearn.ensemble import RandomForestClassifier
import joblib
def train_model(X, y):
model = RandomForestClassifier()
model.fit(X, y)
joblib.dump(model, "models/eeg_decoder.pkl")
return model
📄 src/signal_decoder.py
import joblib
import numpy as np
def decode_signal(model, signal_features):
prediction = model.predict([signal_features])
return prediction[0]
📄 data/sample_eeg.csv
You’ll need EEG data in CSV format. A simple mockup might look like:
ch1,ch2,ch3,ch4,label
0.1,0.2,0.3,0.4,focus
0.5,0.6,0.7,0.8,relax
...
🧠 Notes
- For real EEG data, consider using libraries like
mne
to load.edf
or.fif
files. - You can integrate with hardware like OpenBCI or Emotiv for live data streaming.
- For advanced decoding, explore CNNs or RNNs with libraries like PyTorch or TensorFlow.